94 resultados para ELECTROCHEMISTRY

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many ionic liquids offer a range of properties that make them attractive to the field of electrochemistry; indeed it was electrochemical research and applications that ushered in the modern era of interest in ionic liquids. In parallel with this, a variety of electrochemical devices including solar cells, high energy density batteries, fuel cells, and supercapacitors have become of intense interest as part of various proposed solutions to improve sustainability of energy supply in our societies. Much of our work over the last ten years has been motivated by such applications. Here we summarize the role of ionic liquids in these devices and the insights that the research provides for the broader field of interest of these fascinating liquids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applications of polymers like polypyrrole and polythiophene often require interaction with an electrolyte consisting of solvent and dissolved salt. Ionic Liquids (ILs) are pure saits, fluid at room temperature, that form charged electrolytes. Pure l-Bu-3-Me-Imidazolium PF6 (BMI PF6) a hydrophobic IL that has a wide potential window, was used to investigate the electrochemistry ofpolypyrrole. Enhanced electrochemic~l stability of polypyrrole was obtained on repetitive redox cycling with respect to the equivalent propylene carbonate electrolyte with tetrabutylammonium hexaflurophosphate (TBA PF6) electrolyte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new Lewis-base ionic liquid (IL) based on mono-charged 1,4-diazabicyclo[2.2.2]octane (dabco) was synthesized and its thermal and electrochemical behaviour was characterized. The dabco-based IL with bis(trifluoromethanesulfonyl)amide (TFSA) anion melts at 76 °C when the N-substituted alkyl chain length is 2. The dabco-based IL showed a wide electrochemical window of over 4 V ranging from −3.5 to +1.5 V vs. Fc/Fc+ and was able to deposit and strip lithium from a nickel substrate at reasonable efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemistry of lithium is investigated in a number of electrolytes that consist of a lithium salt dissolved in a combined ionic liquid-organic diluent medium. We find that ethylene carbonate and vinylene carbonate improve electrochemical behaviour, while toluene and tetrahydrofuran are less promising.We also present insights into the electrode passivation caused by these diluents in an ionic liquid electrolyte during lithium cycling. We observe that during lithium cycling those electrolytes with carbonate based diluents are the most able to utilise their previously reported improved lithium ion diffusivities. Conversely, tetrahydrofuran, the most promising diluent of those studied in terms of its known ability to increase lithium ion diffusivity is found not to be as advantageous as a diluent. It appears that the poor electrochemical interfacial properties of the tetrahydrofuran electrolyte prevented the realisation of the benefits of the high solution lithium ion diffusivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The remarkable electrocatalytic properties and small size of carbon nanotubes make them ideal for achieving direct electron transfer to proteins, important in understanding their redox properties and in the development of biosensors. Here, we report shortened SWNTs can be aligned normal to an electrode by self-assembly and act as molecular wires to allow electrical communication between the underlying electrode and redox proteins covalently attached to the ends of the SWNTs, in this case, microperoxidase MP-11. The efficiency of the electron transfer through the SWNTs is demonstrated by electrodes modified with tubes cut to different lengths having the same electron-transfer rate constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eighteen protic ionic liquids containing different combinations of cations and anions, hydrophobicity, viscosity, and conductivity have been synthesized and their physicochemical properties determined. In one series, the diethanolammonium cations were combined with acetate, formate, hydrogen sulfate, chloride, sulfamate, and mesylate anions. In the second series, acetate and formate anions were combined with amine bases, triethylamine, diethylamine, triethanolamine, di-n-propylamine, and di-n-butylamine. The electrochemical characteristics of the eight protic ionic liquids that are liquid at room temperature (RTPILs) have been determined using cyclic, microelectrode, and rotating disk electrode voltammetries. Potential windows of the RTPILs have been compared at glassy carbon, platinum, gold, and boron-doped diamond electrodes and generally found to be the largest in the case of glassy carbon. The voltammetry of IUPAC recommended potential scale reference systems, ferrocene/ferrocenium and cobaltocenium/cobaltocene, have been evaluated and found to be ideal in the case of the less viscous RTPILs but involve adsorption in the highly viscous ones. Other properties such as diffusion coefficients, ionic conductivity, and double layer capacitance also have been measured. The influence of water on the potential windows, viscosity, and diffusion has been studied systematically by deliberate addition of water to the dried ionic liquids. The survey highlights the problems with voltammetric studies in highly viscous room temperature protic ionic liquids and also suggests the way forward with respect to their possible industrial use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bis(trifluoromethanesulfonyl)amide (TFSA) anion is widely studied as an ionic liquid (IL) forming anion which imparts many useful properties, notably electrochemical stability. Here we present electrochemical and spectroscopic evidence indicating that reductive decomposition of the bis(trifluoromethanesulfonyl)amide (TFSA) anion begins at ~ −2.0 V vs. Fc+/Fc, well before the reported cathodic limit for many of these ILs. These processes are shown to be dependent upon the electrode substrate and are influenced by the water content of the IL. Supporting ab initio calculations are presented which suggest a possible mechanism for the anion decomposition. The products appear to passivate the electrode surface and the implications of this behaviour are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 We have studied both 1-ethyl-3-methylimidazolium (C2mim) and N-butyl-N-methylpyrrolidinium (C4mpyr) dicyanamide (dca) ionic liquids (ILs) containing 3 wt % H2O and 9 mol % Zn(dca)2 salt for their ability to support Zn0/2+ electrochemistry in the context of a rechargeable Zn battery. Despite the similarities of the two IL electrolyte systems [identical H2O and Zn(dca)2 contents], the system based on [C2mim] supported much higher current densities for Zn electrochemistry at greatly reduced overpotentials [−0.23 V vs. Zn pseudo-reference, 32 mA cm−2 (red) and 61 mA cm−2 (ox)] compared to the [C4mpyr]-based electrolyte [−0.84 V vs. Zn pseudo-reference, 8 mA cm−2 (red) and 15 mA cm−2 (ox)]. The overpotential for Zn deposition is reduced by 0.13 V on Zn metal surfaces compared to glassy carbon (GC), regardless of the electrolyte used. The morphologies of the Zn deposits on both GC and Zn surfaces were also studied. The Zn surfaces promote a deposition that displays a smooth morphology, resulting from an instantaneous nucleation mechanism demonstrated by chronoamperometric experiments. Finally, both [C2mim] and [C4mpyr] electrolytes were tested in symmetrical Zn|Zn cells, where it was determined that the [C2mim] system could sustain over 90 cycles at 0.1 mA cm−2, whereas the [C4mpyr] based system could only achieve 15 cycles at the more modest current density of 0.05 mA cm−2.